Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from G. lutea leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5–65 min), ethanol concentration (10–90% v/v), liquid-to-solid ratio (10–50 mL/g), and temperature (20–80 ◦C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% v/v ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 ◦C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized G. lutea leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material.
Loading....